11 research outputs found

    Belief State Planning for Autonomously Navigating Urban Intersections

    Full text link
    Urban intersections represent a complex environment for autonomous vehicles with many sources of uncertainty. The vehicle must plan in a stochastic environment with potentially rapid changes in driver behavior. Providing an efficient strategy to navigate through urban intersections is a difficult task. This paper frames the problem of navigating unsignalized intersections as a partially observable Markov decision process (POMDP) and solves it using a Monte Carlo sampling method. Empirical results in simulation show that the resulting policy outperforms a threshold-based heuristic strategy on several relevant metrics that measure both safety and efficiency.Comment: 6 pages, 6 figures, accepted to IV201

    Model Based Residual Policy Learning with Applications to Antenna Control

    Full text link
    Non-differentiable controllers and rule-based policies are widely used for controlling real systems such as telecommunication networks and robots. Specifically, parameters of mobile network base station antennas can be dynamically configured by these policies to improve users coverage and quality of service. Motivated by the antenna tilt control problem, we introduce Model-Based Residual Policy Learning (MBRPL), a practical reinforcement learning (RL) method. MBRPL enhances existing policies through a model-based approach, leading to improved sample efficiency and a decreased number of interactions with the actual environment when compared to off-the-shelf RL methods.To the best of our knowledge, this is the first paper that examines a model-based approach for antenna control. Experimental results reveal that our method delivers strong initial performance while improving sample efficiency over previous RL methods, which is one step towards deploying these algorithms in real networks

    Point-Based Methods for Model Checking in Partially Observable Markov Decision Processes

    Full text link
    Autonomous systems are often required to operate in partially observable environments. They must reliably execute a specified objective even with incomplete information about the state of the environment. We propose a methodology to synthesize policies that satisfy a linear temporal logic formula in a partially observable Markov decision process (POMDP). By formulating a planning problem, we show how to use point-based value iteration methods to efficiently approximate the maximum probability of satisfying a desired logical formula and compute the associated belief state policy. We demonstrate that our method scales to large POMDP domains and provides strong bounds on the performance of the resulting policy.Comment: 8 pages, 3 figures, AAAI 202

    Towards addressing training data scarcity challenge in emerging radio access networks: a survey and framework

    Get PDF
    The future of cellular networks is contingent on artificial intelligence (AI) based automation, particularly for radio access network (RAN) operation, optimization, and troubleshooting. To achieve such zero-touch automation, a myriad of AI-based solutions are being proposed in literature to leverage AI for modeling and optimizing network behavior to achieve the zero-touch automation goal. However, to work reliably, AI based automation, requires a deluge of training data. Consequently, the success of the proposed AI solutions is limited by a fundamental challenge faced by cellular network research community: scarcity of the training data. In this paper, we present an extensive review of classic and emerging techniques to address this challenge. We first identify the common data types in RAN and their known use-cases. We then present a taxonomized survey of techniques used in literature to address training data scarcity for various data types. This is followed by a framework to address the training data scarcity. The proposed framework builds on available information and combination of techniques including interpolation, domain-knowledge based, generative adversarial neural networks, transfer learning, autoencoders, fewshot learning, simulators and testbeds. Potential new techniques to enrich scarce data in cellular networks are also proposed, such as by matrix completion theory, and domain knowledge-based techniques leveraging different types of network geometries and network parameters. In addition, an overview of state-of-the art simulators and testbeds is also presented to make readers aware of current and emerging platforms to access real data in order to overcome the data scarcity challenge. The extensive survey of training data scarcity addressing techniques combined with proposed framework to select a suitable technique for given type of data, can assist researchers and network operators in choosing the appropriate methods to overcome the data scarcity challenge in leveraging AI to radio access network automation

    A Graph Attention Learning Approach to Antenna Tilt Optimization

    Full text link
    6G will move mobile networks towards increasing levels of complexity. To deal with this complexity, optimization of network parameters is key to ensure high performance and timely adaptivity to dynamic network environments. The optimization of the antenna tilt provides a practical and cost-efficient method to improve coverage and capacity in the network. Previous methods based on Reinforcement Learning (RL) have shown great promise for tilt optimization by learning adaptive policies outperforming traditional tilt optimization methods. However, most existing RL methods are based on single-cell features representation, which fails to fully characterize the agent state, resulting in suboptimal performance. Also, most of such methods lack scalability, due to state-action explosion, and generalization ability. In this paper, we propose a Graph Attention Q-learning (GAQ) algorithm for tilt optimization. GAQ relies on a graph attention mechanism to select relevant neighbors information, improve the agent state representation, and update the tilt control policy based on a history of observations using a Deep Q-Network (DQN). We show that GAQ efficiently captures important network information and outperforms standard DQN with local information by a large margin. In addition, we demonstrate its ability to generalize to network deployments of different sizes and densities
    corecore